Implicit Regularization in Matrix Factorization

Jeong Hwichang

Seoul National Universitiy

> 2021.05.13.

Outline

- Introduction
- Matrix regression
- Experiment
- Theorem
- Proof

Introduction

- Deep models often generalize well when trained purely by minimizing the training error, and when optimization problem is underdetermined.
- Even though there are many zero training error solutions, optimization algorithm seems to prefer solutions that do generalize well.
- This bias is not explicitly specified in the objective or problem formulation.(Implicit bias)

Introduction

- It seems that the optimization algorithm minimizes some implicit regularization measure.
- This paper analyze implicit regularization in matrix factorization models.
- Identify the implicit regularizer as the nuclear norm.

Matrix Regression

- Consider least squares objectives over matrices $X \in \mathbb{R}^{n \times n}$ of the form:

$$
\min _{X \succeq 0} F(X)=\|\mathcal{A}(X)-y\|_{2}^{2}
$$

where $\mathcal{A}: \mathbb{R}^{n \times n} \rightarrow \underline{\mathbf{R}}^{m}$ is a linear operator specified by $\mathcal{A}(X)_{i}=\left\langle A_{i}, X\right\rangle, A_{i} \in \mathbb{R}^{n \times n}$, and $y \in \mathbb{R}^{m}$.

- Consider only symmetric positive semidefinite X and symmetric linearly independent A_{i}.

Matrix Regression

- Instead of working on X directly, use a factorization of $X=U U^{T}$.

$$
\min _{U \in \mathbb{R}^{n \times d}} f(U)=\left\|\mathcal{A}\left(U U^{\top}\right)-y\right\|_{2}^{2}
$$

- If $m \ll n^{2}$, then above problem is underdetermined and can be optimized in many ways.
- Estimating a global optima cannot ensure generalization.

Matrix Regression

- To simulate matrix reconstruction problem, generate $m \ll n^{2}$ random measurement matrices and set $y=\mathcal{A}\left(X^{*}\right)$ for some planted $X^{*} \succeq 0$.
- By performing gradient descent on U to convergence and then measure the relative reconstruction error $\left\|X-X^{*}\right\|_{F}$.
- Here η is learning rate and U_{0} is initial value.

Experiment

Figure 1: Reconstruction error of the solutions for the planted 50×50 matrix reconstruction problem. In (a) X^{*} is of rank $r=2$ and $m=3 n r$, in $(b) X^{*}$ has a spectrum decaying as $O\left(1 / k^{1.5}\right)$ normalized to have $\left\|X^{*}\right\|_{*}=\sqrt{r}\left\|X^{*}\right\|_{F}$ for $r=2$ and $m=3 n r$, and in (c) we look at a non-reconstructable setting where the number of measurements $m=n r / 4$ is much smaller than the requirement to reconstruct a rank $r=2$ matrix. The plots compare the reconstruction error of gradient descent on U for different choices initialization U_{0} and step size η, including fixed step-size and exact line search clipped for stability $\left(\eta_{\overline{E L S}}\right)$. Additonally, the orange dashed reference line represents the performance of $X_{g d}$ - a rank unconstrained global optima obtained by projected gradient descent on X space for (1), and 'SVD-Initialization' is an example of an alternate rank d global optima, where initialization U_{0} is picked based on SVD of $X_{g d}$ and gradient descent with small stepsize is run on factor space. The results are averaged across 3 random initialization and (nearly zero) errorbars indicate the standard deviation.

Experiment

$$
\begin{array}{llll}
\text { I }\left\|U_{0}\right\|_{F}=10^{-4}, \eta=10^{-3} & \text { I } & \left\|U_{0}\right\|_{F}=10^{-4}, \eta \overline{E L S} & \cdots \cdots
\end{array} \min _{\mathcal{A}(X)=y}\|X\|_{*}
$$

(a) Low rank X^{*}

(b) Low nuclear norm X^{*}

(c) Low rank $X^{*}, m=n r / 4$

Figure 2: Nuclear norm of the solutions from Figure 1. In addition to the reference of $X_{g d}$ from Figure 1, the magenta dashed line (almost overlapped by the plot of $\|U\|_{F}=10^{-4}, \eta=10^{-3}$) is added as a reference for the (rank unconstrained) minimum nuclear norm global optima. The error bars indicate the standard deviation across 3 random initializations. We have dropped the plot for $\|U\|_{F}=1, \eta=10^{-3}$ to reduce clutter.

Matrix Regression

Theorem

In the case where matrices $\left\{A_{i}\right\}_{i=1}^{m}$ commute, if $\widehat{X}=\lim _{\alpha \rightarrow 0} X_{\infty}(\alpha I)$ exists and is a global optimum for $\min _{X \succeq 0}\|\mathcal{A}(X)-y\|_{2}^{2}$ with $\mathcal{A}(\widehat{X})=y$, then $\widehat{X} \in \operatorname{argmin}_{X \succeq 0}\|X\|_{*}$ s.t. $\mathcal{A}(X)=y$.

- Here limit point $X_{\infty}\left(X_{i n i t}\right):=\lim _{t \rightarrow \infty} X_{t}$ for the factorized gradient flow initialized at $X_{0}=X_{\text {init }}$.

Proof

Using the chain rule

$$
\dot{X}_{t}=\dot{U}_{t} U_{t}^{\top}+U_{t} \dot{U}_{t}^{\top}=-\mathcal{A}^{*}\left(r_{t}\right) X_{t}-X_{t} \mathcal{A}^{*}\left(r_{t}\right) \cdots(1)
$$

where $\mathcal{A}^{*}: \underline{\mathbf{R}}^{m} \rightarrow \mathbb{R}^{n \times n}$ is the adjoint of \mathcal{A} and is given by $\mathcal{A}^{*}(r)=\sum_{i} r_{i} A_{i}$ and $r_{t}=$ $\mathcal{A}\left(X_{t}\right)-y$.
When A_{i} commute, Defining $s_{T}=-\int_{0}^{T} r_{t} d t$ - a vector integral, we can verify by differentiating that solution of (1) is

$$
X_{t}=\exp \left(\mathcal{A}^{*}\left(s_{t}\right)\right) X_{0} \exp \left(\mathcal{A}^{*}\left(s_{t}\right)\right) \cdots(2)
$$

Proof

Our problem is

$$
\min _{X \succeq 0}\|X\|_{*} \text { s.t. } \mathcal{A}(X)=y \cdots(3)
$$

The KKT optimality conditions for (1) are:

$$
\begin{equation*}
\exists \nu \in \mathbb{R}^{m} \text { s.t. } \quad \mathcal{A}(X)=y \quad X \succeq 0 \quad \mathcal{A}^{*}(\nu) \preceq I \quad\left(I-\mathcal{A}^{*}(\nu)\right) X=0 \cdots \tag{4}
\end{equation*}
$$

It suffices to show that such a \widehat{X} satisfies the complementary slackness and dual feasibility KKT conditions in (4). Since the matrices A_{i} commute and are symmetric, they are simultaneously diagonalizable by a basis $v_{1}, . ., v_{n}$, and so is $\mathcal{A}^{*}(s)$ for any $s \in \mathbb{R}^{m}$. This implies that for any $\alpha, X_{\infty}(\alpha I)$ given by (2) and its limit \widehat{X} also have the same eigenbasis. Furthermore, since $X_{\infty}(\alpha I)$ converges to \widehat{X}, the scalars $v_{k}^{\top} X_{\infty}(\alpha I) v_{k} \rightarrow v_{k}^{\top} \widehat{X} v_{k}$ for each $k \in[n]$. Therefore, $\lambda_{k}\left(X_{\infty}(\alpha I)\right) \rightarrow \lambda_{k}(\widehat{X})$, where $\lambda_{k}(\cdot)$ is defined as the eigenvalue corresponding to eigenvector v_{k} and not necessarily the $k^{\text {th }}$ largest eigenvalue.

Proof

Let $\beta=-\log \alpha$, then $\lambda_{k}\left(X_{\infty}(\alpha I)\right)=\exp \left(2 \lambda_{k}\left(\mathcal{A}^{*}\left(s_{\infty}(\beta)\right)\right)-2 \beta\right)$. For all k such that $\lambda_{k}(\widehat{X})>0$, by the continuity of log, we have
$2 \lambda_{k}\left(\mathcal{A}^{*}\left(s_{\infty}(\beta)\right)\right)-2 \beta-\log \lambda_{k}(\widehat{X}) \rightarrow 0 \Longrightarrow \lambda_{k}\left(\mathcal{A}^{*}\left(\frac{s_{\infty}(\beta)}{\beta}\right)\right)-1-\frac{\log \lambda_{k}(\widehat{X})}{2 \beta} \rightarrow 0$
Defining $\nu(\beta)=s_{\infty}(\beta) / \beta$, we conclude that for all k such that $\lambda_{k}(\widehat{X}) \neq 0, \lim _{\beta \rightarrow \infty} \lambda_{k}\left(\mathcal{A}^{*}(\nu(\beta))\right)=1$ Similarly, for each k such that $\lambda_{k}(\widehat{X})=0$

$$
\exp \left(2 \lambda_{k}\left(\mathcal{A}^{*}\left(s_{\infty}(\beta)\right)\right)-2 \beta\right) \rightarrow 0 \Longrightarrow \exp \left(\lambda_{k}\left(\mathcal{A}^{*}(\nu(\beta))\right)-1\right)^{2 \beta} \rightarrow 0
$$

Thus, for every $\epsilon \in(0,1]$, for sufficiently large β

$$
\exp \left(\lambda_{k}\left(\mathcal{A}^{*}(\nu(\beta))\right)-1\right)<\epsilon^{\frac{1}{2 \beta}}<1 \Longrightarrow \lambda_{k}\left(\mathcal{A}^{*}(\nu(\beta))\right)<1
$$

Therefore, we have shown that $\lim _{\beta \rightarrow \infty} \mathcal{A}^{*}(\nu(\beta)) \preceq I$ and $\lim _{\beta \rightarrow \infty} \mathcal{A}^{*}(\nu(\beta)) \hat{X}=\widehat{X}$ establishing the optimality of \widehat{X} for (3).

