Implicit Regularization in Matrix Factorization

Jeong Hwichang

Seoul National Universitiy

2021.05.13.

Outline

- Introduction
- Matrix regression
- Experiment
- Theorem
- Proof

Jeong Hwichang (Seoul National Universitiy)

- Deep models often generalize well when trained purely by minimizing the training error, and when optimization problem is underdetermined.
- Even though there are many zero training error solutions, optimization algorithm seems to prefer solutions that do generalize well.
- This bias is not explicitly specified in the objective or problem formulation.(Implicit bias)

- It seems that the optimization algorithm minimizes some implicit regularization measure.
- This paper analyze implicit regularization in matrix factorization models.
- Identify the implicit regularizer as the nuclear norm.

• Consider least squares objectives over matrices $X \in \mathbb{R}^{n \times n}$ of the form:

$$\min_{X \succeq 0} F(X) = \|\mathcal{A}(X) - y\|_2^2$$

where $\mathcal{A} : \mathbb{R}^{n \times n} \to \underline{\mathbf{R}}^m$ is a linear operator specified by $\mathcal{A}(X)_i = \langle A_i, X \rangle, A_i \in \mathbb{R}^{n \times n}$, and $y \in \mathbb{R}^m$.

• Consider only symmetric positive semidefinite X and symmetric linearly independent A_i .

• Instead of working on X directly, use a factorization of $X = UU^T$.

$$\min_{U \in \mathbb{R}^{n \times d}} f(U) = \left\| \mathcal{A} \left(U U^{\top} \right) - y \right\|_{2}^{2}$$

- $\bullet\,$ If $m\ll n^2,$ then above problem is underdetermined and can be optimized in many ways.
- Estimating a global optima cannot ensure generalization.

Matrix Regression

- To simulate matrix reconstruction problem, generate m ≪ n² random measurement matrices and set y = A(X^{*}) for some planted X^{*} ≥ 0.
- By performing gradient descent on U to convergence and then measure the relative reconstruction error $||X X^*||_F$.
- Here η is learning rate and U_0 is initial value.

Figure 1: Reconstruction error of the solutions for the planted 50 × 50 matrix reconstruction problem. In (a) X^* is of rank r = 2 and m = 3nr, in (b) X^* has a spectrum decaying as $O(1/k^{1.5})$ normalized to have $||X^*||_* = \sqrt{r}||X^*||_F$ for r = 2 and m = 3nr, and in (c) we look at a non-reconstructable setting where the number of measurements m = nr/4 is much smaller than the requirement to reconstruct a rank r = 2 matrix. The plots compare the reconstruction error of gradient descent on U for different choices initialization U_0 and step size η , including fixed step-size and exact line search clipped for stability ($\eta_{\overline{ELS}}$). Additionally, the orange dashed reference line represents the performance of X_{gd} — a rank unconstrained global optima obtained by projected gradient descent on X space for (1), and 'SVD-Initialization' is an example of an alternate rank d global optima, where initialization U_0 is picked based on SVD of X_{gd} and gradient descent with small stepsize is run on factor space. The results are averaged across 3 random initialization and (nearly zero) errorbars indicate the standard deviation.

Figure 2: Nuclear norm of the solutions from Figure 1. In addition to the reference of X_{gd} from Figure 1, the magenta dashed line (almost overlapped by the plot of $||U||_F = 10^{-4}$, $\eta = 10^{-3}$) is added as a reference for the (rank unconstrained) minimum nuclear norm global optima. The error bars indicate the standard deviation across 3 random initializations. We have dropped the plot for $||U||_F = 1$, $\eta = 10^{-3}$ to reduce clutter.

Matrix Regression

Theorem

In the case where matrices $\{A_i\}_{i=1}^m$ commute, if $\widehat{X} = \lim_{\alpha \to 0} X_{\infty}(\alpha I)$ exists and is a global optimum for $\min_{X \succeq 0} \|\mathcal{A}(X) - y\|_2^2$ with $\mathcal{A}(\widehat{X}) = y$, then $\widehat{X} \in \operatorname{argmin}_{X \succeq 0} \|X\|_*$ s.t. $\mathcal{A}(X) = y$.

• Here limit point $X_{\infty}(X_{init}) := \lim_{t \to \infty} X_t$ for the factorized gradient flow initialized at $X_0 = X_{init}$.

Proof

Using the chain rule

$$\dot{X}_{t} = \dot{U}_{t}U_{t}^{\top} + U_{t}\dot{U}_{t}^{\top} = -\mathcal{A}^{*}\left(r_{t}\right)X_{t} - X_{t}\mathcal{A}^{*}\left(r_{t}\right)\cdots\left(1\right)$$

where $\mathcal{A}^* : \mathbf{\underline{R}}^m \to \mathbb{R}^{n \times n}$ is the adjoint of \mathcal{A} and is given by $\mathcal{A}^*(r) = \sum_i r_i A_i$ and $r_t = \mathcal{A}(X_t) - y$.

When A_i commute, Defining $s_T = -\int_0^T r_t dt - a$ vector integral, we can verify by differentiating that solution of (1) is

$$X_{t} = \exp\left(\mathcal{A}^{*}\left(s_{t}\right)\right) X_{0} \exp\left(\mathcal{A}^{*}\left(s_{t}\right)\right) \cdots (2)$$

Proof

Our problem is

$$\min_{X \succeq 0} \|X\|_* \text{ s.t. } \mathcal{A}(X) = y \cdots (3)$$

The KKT optimality conditions for (1) are:

$$\exists \nu \in \mathbb{R}^m \text{ s.t. } \mathcal{A}(X) = y \quad X \succeq 0 \quad \mathcal{A}^*(\nu) \preceq I \quad (I - \mathcal{A}^*(\nu)) X = 0 \cdots (4)$$

It suffices to show that such a \widehat{X} satisfies the complementary slackness and dual feasibility KKT conditions in (4). Since the matrices A_i commute and are symmetric, they are simultaneously diagonalizable by a basis $v_1, ..., v_n$, and so is $\mathcal{A}^*(s)$ for any $s \in \mathbb{R}^m$. This implies that for any $\alpha, X_{\infty}(\alpha I)$ given by (2) and its limit \widehat{X} also have the same eigenbasis. Furthermore, since $X_{\infty}(\alpha I)$ converges to \widehat{X} , the scalars $v_k^\top X_{\infty}(\alpha I)v_k \rightarrow v_k^\top \widehat{X}v_k$ for each $k \in [n]$. Therefore, $\lambda_k (X_{\infty}(\alpha I)) \rightarrow \lambda_k(\widehat{X})$, where $\lambda_k(\cdot)$ is defined as the eigenvalue corresponding to eigenvector v_k and not necessarily the k^{th} largest eigenvalue.

Proof

Let $\beta = -\log \alpha$, then $\lambda_k (X_{\infty}(\alpha I)) = \exp \left(2\lambda_k \left(\mathcal{A}^* \left(s_{\infty}(\beta)\right)\right) - 2\beta\right)$. For all k such that $\lambda_k(\widehat{X}) > 0$, by the continuity of log, we have

$$2\lambda_k\left(\mathcal{A}^*\left(s_{\infty}(\beta)\right)\right) - 2\beta - \log\lambda_k(\widehat{X}) \to 0 \Longrightarrow \lambda_k\left(\mathcal{A}^*\left(\frac{s_{\infty}(\beta)}{\beta}\right)\right) - 1 - \frac{\log\lambda_k(\widehat{X})}{2\beta} \to 0$$

Defining $\nu(\beta) = s_{\infty}(\beta)/\beta$, we conclude that for all k such that $\lambda_k(\widehat{X}) \neq 0, \lim_{\beta \to \infty} \lambda_k \left(\mathcal{A}^*(\nu(\beta))\right) = 1$ Similarly, for each k such that $\lambda_k(\widehat{X}) = 0$

$$\exp\left(2\lambda_k\left(\mathcal{A}^*\left(s_{\infty}(\beta)\right)\right)-2\beta\right)\to 0\Longrightarrow\exp\left(\lambda_k\left(\mathcal{A}^*(\nu(\beta))\right)-1\right)^{2\beta}\to 0$$

Thus, for every $\epsilon \in (0, 1]$, for sufficiently large β

$$\exp\left(\lambda_k\left(\mathcal{A}^*(\nu(\beta))\right) - 1\right) < \epsilon^{\frac{1}{2\beta}} < 1 \Longrightarrow \lambda_k\left(\mathcal{A}^*(\nu(\beta))\right) < 1$$

Therefore, we have shown that $\lim_{\beta\to\infty} \mathcal{A}^*(\nu(\beta)) \leq I$ and $\lim_{\beta\to\infty} \mathcal{A}^*(\nu(\beta))\hat{X} = \hat{X}$ establishing the optimality of \hat{X} for (3).