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Introduction

Deep models often generalize well when trained purely by minimizing the training
error, and when optimization problem is underdetermined.

Even though there are many zero training error solutions, optimization algorithm
seems to prefer solutions that do generalize well.

This bias is not explicitly specified in the objective or problem formulation.(Implicit
bias)
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Introduction

It seems that the optimization algorithm minimizes some implicit regularization
measure.

This paper analyze implicit regularization in matrix factorization models.

Identify the implicit regularizer as the nuclear norm.

Jeong Hwichang (Seoul National Universitiy) Implicit Regularization in Matrix Factorization 2021.05.13. 4 / 13



5 / 13

Matrix Regression

Consider least squares objectives over matrices X ∈ Rn×n of the form:

min
X�0

F (X) = ‖A(X)− y‖2
2

where A : Rn×n → Rm is a linear operator specified by
A(X)i = 〈Ai, X〉 , Ai ∈ Rn×n, and y ∈ Rm.

Consider only symmetric positive semidefinite X and symmetric linearly independent
Ai.
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Matrix Regression

Instead of working on X directly, use a factorization of X = UUT .

min
U∈Rn×d

f(U) =
∥∥A (UU>)− y∥∥2

2

If m� n2, then above problem is underdetermined and can be optimized in many
ways.

Estimating a global optima cannot ensure generalization.
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Matrix Regression

To simulate matrix reconstruction problem, generate m� n2 random measurement
matrices and set y = A(X∗) for some planted X∗ � 0.

By performing gradient descent on U to convergence and then measure the relative
reconstruction error ‖X −X∗‖F .

Here η is learning rate and U0 is initial value.
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Experiment
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Experiment
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Matrix Regression

Theorem

In the case where matrices {Ai}mi=1 commute, if X̂ = limα→0 X∞(αI) exists and is a
global optimum for minX�0 ‖A(X)− y‖2

2 with A(X̂) = y,then
X̂ ∈ argminX�0 ‖X‖∗s.t. A(X) = y.

Here limit point X∞(Xinit) := limt→∞Xt for the factorized gradient flow initialized
at X0 = Xinit.

Jeong Hwichang (Seoul National Universitiy) Implicit Regularization in Matrix Factorization 2021.05.13. 10 / 13



11 / 13

Proof

Using the chain rule

Ẋt = U̇tU
>
t + UtU̇

>
t = −A∗ (rt)Xt −XtA∗ (rt) · · · (1)

where A∗ : Rm → Rn×n is the adjoint of A and is given by A∗(r) =
∑

i
riAi and rt =

A (Xt)− y.
When Ai commute, Defining sT = −

∫ T
0 rtdt− a vector integral, we can verify by

differentiating that solution of (1) is

Xt = exp (A∗ (st))X0 exp (A∗ (st)) · · · (2)
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Proof

Our problem is
min
X�0
‖X‖∗ s.t. A(X) = y · · · (3)

The KKT optimality conditions for (1) are:

∃ν ∈ Rm s.t. A(X) = y X � 0 A∗(ν) � I (I −A∗(ν))X = 0 · · · (4)

It suffices to show that such a X̂ satisfies the complementary slackness and dual
feasibility KKT conditions in (4). Since the matrices Ai commute and are symmetric,
they are simultaneously diagonalizable by a basis v1, .., vn, and so is A∗(s) for any
s ∈ Rm. This implies that for any α,X∞(αI) given by (2) and its limit X̂ also have the
same eigenbasis. Furthermore, since X∞(αI) converges to X̂, the scalars
v>k X∞(αI)vk → v>k X̂vk for each k ∈ [n]. Therefore, λk (X∞(αI))→ λk(X̂), where
λk(·) is defined as the eigenvalue corresponding to eigenvector vk and not necessarily the
kth largest eigenvalue.
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Proof

Let β = − logα, then λk (X∞(αI)) = exp (2λk (A∗ (s∞(β)))− 2β) . For all k such that
λk(X̂) > 0, by the continuity of log, we have

2λk (A∗ (s∞(β)))− 2β− log λk(X̂)→ 0 =⇒ λk

(
A∗
(
s∞(β)
β

))
− 1− log λk(X̂)

2β → 0

Defining ν(β) = s∞(β)/β, we conclude that for all k such that
λk(X̂) 6= 0, limβ→∞ λk (A∗(ν(β))) = 1 Similarly, for each k such that λk(X̂) = 0

exp (2λk (A∗ (s∞(β)))− 2β)→ 0 =⇒ exp (λk (A∗(ν(β)))− 1)2β → 0

Thus, for every ε ∈ (0, 1], for sufficiently large β

exp (λk (A∗(ν(β)))− 1) < ε
1

2β < 1 =⇒ λk (A∗(ν(β))) < 1

Therefore, we have shown that limβ→∞A∗(ν(β)) � I and limβ→∞A∗(ν(β))X̂ = X̂

establishing the optimality of X̂ for (3).
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