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Introduction

@ Deep models often generalize well when trained purely by minimizing the training
error, and when optimization problem is underdetermined.

@ Even though there are many zero training error solutions, optimization algorithm
seems to prefer solutions that do generalize well.

@ This bias is not explicitly specified in the objective or problem formulation.(Implicit

bias)
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Introduction

@ It seems that the optimization algorithm minimizes some implicit regularization

measure.
o This paper analyze implicit regularization in matrix factorization models.

o Identify the implicit regularizer as the nuclear norm.
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Matrix Regression

o Consider least squares objectives over matrices X € R"*™ of the form:

min F(X) = [ AX) — y||2

X=0

where A : R™*™ — R™ is a linear operator specified by
.A(X)»L = <A1,X> ,Ai S Ran' and S R™.

@ Consider only symmetric positive semidefinite X and symmetric linearly independent
A;.
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Matrix Regression

o Instead of working on X directly, use a factorization of X = UU7”.

min_ f(U) = A (0UT) —y]

UcRnXd 2

e If m <« n?, then above problem is underdetermined and can be optimized in many

ways.

o Estimating a global optima cannot ensure generalization.
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Matrix Regression

@ To simulate matrix reconstruction problem, generate m < n? random measurement
matrices and set y = A(X™) for some planted X™* > 0.

o By performing gradient descent on U to convergence and then measure the relative
reconstruction error || X — X*||F.

@ Here 7 is learning rate and Uy is initial value.
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Experiment
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Figure 1: Reconstruction error of the solutions for the planted 50 x 50 matrix reconstruction problem. In (a) X* is of rank 7 = 2 and
m = 3nr,in (b) X* has a spectrum decaying as O(1/k!-®) normalized to have || X*||« = v/7||X*||  for r = 2 and m = 3nr, and
n (e) we look at a non-reconstructable setting where the number of measurements m = nr /4 is much smaller than the requirement to
reconstruct a rank © = 2 matrix. The plots compare the reconstruction error of gradient descent on U for different choices initialization
U and step size 7, including fixed step-size and exact line search clipped for stability (n57g). Additonally, the orange dashed reference
line represents the performance of X 4 — a rank unconstrained global optima obtained by projected gradient descent on X space for (1),
and "SVD-Initialization’ is an example of an alternate rank d global optima, where initialization Uy is picked based on SVD of X 4
and gradient descent with small stepsize is run on factor space. The results are averaged across 3 random initialization and (nearly zero)
errorbars indicate the standard deviation.
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Experiment
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Figure 2: Nuclear norm of the solutions from Figure 1. In addition to the reference of X ;4 from Figure 1, the magenta dashed line
(almost overlapped by the plot of ||U||g = 10~%,5 = 10~3) is added as a reference for the (rank unconstrained) minimum nuclear
norm global optima. The error bars indicate the standard deviation across 3 random initializations. We have dropped the plot for
|U|| g = 1,n7 = 102 10 reduce clutter.
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Matrix Regression

Theorem

In the case where matrices {Ai};il commute, ifX = lima—0 Xoo(al) exists and is a
global optimum for minx o || A(X) — y||3 with A(X) = y,then

X € argminy, || X|+s.t. A(X) =y.

@ Here limit point X oo (Xinit) := lim; o X¢ for the factorized gradient flow initialized
at Xo = Xinit.
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Proof

Using the chain rule
X, = UU + U0 = —A" (r) X — Xe A" (1) -+ (1)

where A* : R™ — R™™ is the adjoint of A and is given by A*(r) = ZZ riA; and 7y =
A(Xe) — .

When A; commute, Defining s = — fOT ridt— a vector integral, we can verify by
differentiating that solution of (1) is

Xy = exp (A" (1)) Xoexp (A" (s0)) -+ (2)
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Proof

Our problem is
min || X ||« s.t. AX)=y---
Xé%” [« st AX) =y (3)

The KKT optimality conditions for (1) are:
weR"st. AX)=y X>0 A"(v)=xI (I-A"Ww)X=0---(4)

It suffices to show that such a X satisfies the complementary slackness and dual
feasibility KKT conditions in (4). Since the matrices A; commute and are symmetric,
they are simultaneously diagonalizable by a basis v1, .., v,, and so is A*(s) for any

s € R™. This implies that for any «, Xo(al) given by (2) and its limit X also have the
same eigenbasis. Furthermore, since X (al) converges to X, the scalars

v Xoo(ad)v — v,;r)?vk for each k € [n]. Therefore, Ay (Xoo(al)) — )\k()?) where

Ai () is defined as the eigenvalue corresponding to eigenvector vy, and not necessarily the
k™ largest eigenvalue.
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Proof

Let 8 = —loga, then A (Xoo(ad)) = exp (2Ak (A" (sso(B))) — 25) . For all k such that

~

A& (X) > 0, by the continuity of log, we have

2Xp (A" (Sm(ﬂ)))*Qﬂ*IOgAk(y) - 0= X\ <A* (S‘x’ﬂw))> 71,;

Defining v(8) = s« (8)/8, we conclude that for all k such that
)\k(i) # 0,limg 00 A (A" (v(B))) = 1 Similarly, for each k such that )\k(i) =0

exp (2Xk (A" (s00(8))) — 28) = 0 = exp (A (A" (¥(8))) — D* — 0
Thus, for every e € (0, 1], for sufficiently large 3
exp (Ak (A" (U(B)) — 1) < €28 <1 == M\ (A"(v(B))) < 1

Therefore, we have shown that lims oo A*(v(8)) < I and limg_, A*(v(8))X = X
establishing the optimality of X for (3).
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